Compressing Decision Tables

The DMC Challenge Sep-2020 deals with compression of decision tables trying to replace relatively large decision tables with “almost” equivalent but smaller decision tables. It is only natural to apply Machine Learning to this problem as it allows us to automatically discover business rules from the sets of labeled historical data records. So, I decided to use the open source Rule Learner to address this problem. In this post I will describe how I approached this problem with these implementation steps:

  1. Write a simple generator of data instances with various combinations of known attributes
  2. Run the existing decision table using OpenRules to produce labeled instances
  3. Feed the labeled instances to Rule Learner (or SaaS Rule Learner) to automatically discover a new decision table and evaluate its performance.

Continue reading

SaaS Rule Learner

No alt text provided for this imageFinally, our SaaS Rule Learner became publicly available allowing business analysts to extract business rules from their historical data sets. They can do it without any downloads directly from Amazon cloud using AWS Marketplace SaaS subscription – see https://aws.amazon.com/marketplace/pp/B08HNF1Q5J. Watch this video https://youtu.be/88B5rJa2yrI that describes how to use it for the demo and custom data sets. Try SaaS Rule Learner from http://saas.rulelearner.com. Continue reading

Self-Learning Decision Models

Today I presented “Rule Learner: Self-Learning Decision Models” at the DecisionCAMP Monthly Meeting. It’s about an integrated use of Machine Learning (ML) and Business Rules (BR) within Digital Decisioning Platforms. It describes how “RuleLearner.com” can help business analysts to discover business rules from large historical data sets. Without forcing business analysts to become experts in data science or programming, Rule Learner discovers business rules by naturally incorporating ML algorithms into Business Decision Models. The session focuses on practical aspects of rules generation by developing ever-learning decision-making applications. Video Slides

New Rule Learner for Ever-Learning Decision-Making Systems

OpenRules, Inc. was among first BR vendors who introduced the integrated Machine Learning and Business Rules approach back in 2007.  Over the years, our Rule Learner was successfully used to discover business rules by analyzing large sets of historical data in different problem domains. One of the first success came in the large IRS project “The integrated use of BR+ML technologies” – read more.

Today we introduced a new version of Rule Learner publicly available as an open source product under the terms of the LGPL (it means no restrictions for commercial use!). You can download it for free from RuleLearner.com. It naturally integrates Machine Learning (ML) and Business Rules (BR) techniques by incorporating ML algorithms into rules-based Decision Models. Continue reading

Can ML help with Compression of Large Rulesets?

The integrated use of Machine Learning (ML) and Business Rules (BR) is one of the most practical trends in the development of modern decision-making software. OpenRules is involved in this development for more than 10 years starting with our successful ML+BR projects for IRS. Along with a general purpose Rule Learner, we also provide Rule Compressor, that uses ML to compress large decision tables to smaller ones. This recent presentation explains how it works. Continue reading